Weak Convergence Results for Extremal Processes Generated by Dependent Random Variables
نویسندگان
چکیده
منابع مشابه
On the Complete Convergence ofWeighted Sums for Dependent Random Variables
We study the limiting behavior of weighted sums for negatively associated (NA) random variables. We extend results in Wu (1999) and a theorem in Chow and Lai (1973) for NA random variables.
متن کاملWeak Convergence of Subordinators to Extremal Processes
For certain subordinators (Xt)t≥0 it is shown that the process (−t logXts)s>0 tends to an extremal process (η̂s)s>0 in the sense of convergence of the finite dimensional distributions. Additionally it is also shown that (z ∧ (−t logXts))s≥0 converges weakly to (z ∧ η̂s)s≥0 in D[0,∞), the space of càdlàg functions equipped with Skorohod’s J1 metric.
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1978
ISSN: 0091-1798
DOI: 10.1214/aop/1176995486